Using Geospatial Data in Conservation Planning

Tom D’Avello, Soil Scientist/GIS Specialist
USDA-NRCS
National Soil Survey Center, Geospatial research Unit
West Virginia University
Morgantown, WV
Using Geospatial Data in Conservation Planning

Geospatial data – data that is explicitly geographically referenced

Used with Geographic Information Systems to answer:

- **What** – what characteristics are present for an area of interest (AOI), including people associated with AOI
- **Where** – where are the areas with a given set of characteristics, including people associated with AOI
- **When** – When did characteristic(s) change
- **Why** – The most interesting and difficult

Managing and analyzing this information requires data
Using Geospatial Data in Conservation Planning

https://gdg.sc.egov.usda.gov/
Using Geospatial Data in Conservation Planning

General land cover characteristics by NACD

NACD NE Regional Conference 8/3/2015
Using Geospatial Data in Conservation Planning

Characteristics of Northeast NACD

<table>
<thead>
<tr>
<th>State</th>
<th>pop_2013</th>
<th>pop_sqmi</th>
<th>pct_dev</th>
<th>pct_for</th>
<th>pct_ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>1328302</td>
<td>37.5</td>
<td>3.23148</td>
<td>61.4457</td>
<td>3.40267</td>
</tr>
<tr>
<td>Vermont</td>
<td>626630</td>
<td>65.2</td>
<td>5.4561</td>
<td>70.0792</td>
<td>13.3398</td>
</tr>
<tr>
<td>West Virginia</td>
<td>1854304</td>
<td>76.5</td>
<td>7.05863</td>
<td>50.3927</td>
<td>8.6292</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>1323459</td>
<td>141.5</td>
<td>7.82987</td>
<td>73.7493</td>
<td>3.78247</td>
</tr>
<tr>
<td>New York</td>
<td>19651127</td>
<td>360.8</td>
<td>8.33906</td>
<td>48.3438</td>
<td>19.5438</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>12773801</td>
<td>277.4</td>
<td>12.111</td>
<td>58.4952</td>
<td>22.2886</td>
</tr>
<tr>
<td>Delaware</td>
<td>925749</td>
<td>371.9</td>
<td>14.9561</td>
<td>8.92374</td>
<td>32.8618</td>
</tr>
<tr>
<td>Maryland</td>
<td>5928814</td>
<td>475.3</td>
<td>15.3841</td>
<td>26.0132</td>
<td>24.6913</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>6692824</td>
<td>634.2</td>
<td>19.3694</td>
<td>38.478</td>
<td>4.47283</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>1051511</td>
<td>680.6</td>
<td>20.8897</td>
<td>31.3511</td>
<td>3.42738</td>
</tr>
<tr>
<td>Connecticut</td>
<td>3596080</td>
<td>648.8</td>
<td>21.8764</td>
<td>48.8945</td>
<td>6.45472</td>
</tr>
<tr>
<td>New Jersey</td>
<td>8899339</td>
<td>1020.4</td>
<td>27.0399</td>
<td>24.1862</td>
<td>11.9491</td>
</tr>
</tbody>
</table>
Using Geospatial Data in Conservation Planning

Geospatial data helps refine existing general soils information, WV
Using Geospatial Data in Conservation Planning

Geospatial data helps refine existing general soils information.
Using Geospatial Data in Conservation Planning

Geospatial data helps with initial soil mapping.

Soil Scientists’ Knowledge

Soil Inference Engine

Environmental Data

Inferred Cabot soil distribution
Using Geospatial Data in Conservation Planning

Geospatial data helps with initial soil mapping

Raster soil mapping of a lodgment till catena in the upper Wild Ammonoosuc River watershed, NH
Using Geospatial Data in Conservation Planning

Bathymetric sampling for sediment survey and subaqueous soil mapping,²

Lake Galena, IL Bathymetric map

Subaqueous soil map, Rhode Island⁷
Using Geospatial Data in Conservation Planning

Identification of critical areas in Vermont

LiDAR is essential

Lake Champlain Basin

10m DEM

1m DEM from LiDAR

NACD NE Regional Conference 8/3/2015
Using Geospatial Data in Conservation Planning

Flow accumulation on crop fields in Vermont – assist in outreach where riparian buffers may be needed
Using Geospatial Data in Conservation Planning

Identification of critical areas in Vermont

Can we find deep or ephemeral gullies?

Possible gullies encroaching on crop fields
Using Geospatial Data in Conservation Planning

Prioritizing and tracking work - Vermont

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DCs' Priority</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>Reed</td>
<td>Reed</td>
<td>Caroline (#1 priority for CA) and Gus</td>
<td>Caroline(#2 priority for CA)</td>
<td>Caroline Reed</td>
</tr>
<tr>
<td>Rock River</td>
<td>data work done, edits done; QA complete 5/8/15</td>
<td>100% complete; QA complete</td>
<td>85% complete - still working on methodology</td>
<td>100% complete</td>
<td>contacted UVM student about methodology - on hold low priority</td>
<td>Caroline Reed</td>
<td>Caroline Reed</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>Caroline Reed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Carmi/Pike River</td>
<td>100% complete; QA complete</td>
<td>began 5/14; 100% complete; QA complete 5/20</td>
<td>85% complete - still working on methodology</td>
<td>100% complete</td>
<td>contacted UVM student about methodology - on hold low priority</td>
<td>Caroline Reed</td>
<td>Caroline Reed</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>Caroline Reed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Image: Edge of field water quality monitoring in Vermont
Using Geospatial Data in Conservation Planning

Highly Erodible Land Determinations in New Jersey - prototype

Field with soils

Slope from LiDAR

HEL result
Using Geospatial Data in Conservation Planning

AgBufferBuilder ¹ - A GIS based tool for **design** and assessment of filter strips

47% trapping efficiency

72% trapping efficiency
Using Geospatial Data in Conservation Planning

AgBufferBuilder - A GIS based tool for design and **assessment** of filter strips

The total area devoted to filter strips is the same for uniform and variable widths. Effect on trapping efficiency is dramatic.

- **72% trapping efficiency for areas in red**
- **35% trapping efficiency for typically designed uniform width filter strip**
Using Geospatial Data in Conservation Planning

Tools to automate tasks needed for planning

NRCS Engineering Tools
- Field Office Tools
 - Clip DEM to AOI
 - Create Contours From AOI
 - Create Cross Section / Profile(s)
 - Estimate Pool From Contours
 - Slope - Average by AOI
 - Slope - Percent By AOI

POINT_Z

NACD NE Regional Conference 8/3/2015
Using Geospatial Data in Conservation Planning

Tools to automate tasks needed for planning

51.1 ac. dr. area
6.3 % avg. slope
74 overall CN

EFH-2 Estimating Runoff and Peak Discharge

Introduction

Basic data

Client: James Buffett
State: KY

Practices: Gravved Waterway

By: SDC
Date: 1/3/2013

Drainage Area: 51.1 acres
Runoff Curve Number: 74
Watershed Length: 3317 feet
Watershed Slope: 6.3 percent
Time of Concentration: 0.66 hours

51.1 ac. dr. area
6.3 % avg. slope
74 overall CN

86 cfs Peak Flow - 1m LiDAR
Using Geospatial Data in Conservation Planning

Tools to automate tasks needed for planning

“Wheeled Distance” vs. “As the Crow Flies”
Using Geospatial Data in Conservation Planning

References

3. http://www.mngeo.state.mn.us/cgi-bin/LiDAR/topic_show.pl?tid=24

